BlackHoles@Home

Status Report

Zach Etienne

NRPy+: Python-based C code generation framework for NR

Tensorial
expressions in
Einstein-like
notation

Highly optimized
C-code kernels
(with FDs)

"Nerpy", the NRPy+ mascot. Photo CC2.0 Pacific Environment (modified).

https://blackholesathome.net

https://nrpyplus.net

https://github.com/zachetienne/nrpytutorial

BlackHoles@Home: A proposed volunteer computing project to fit numerical relativity BBH simulations on consumer-grade desktop computers.

Goals: GW catalog generation & follow-ups at scales needed for e.g., LISA.

- Inferring source properties from grav. waves tough
 - Binary black holes: 7 dims of parameters!
 - Current NR grav. wave catalogs:
 - ~3,000 waveforms/15 years
 (~3 points per dimension)
 - Not enough moving forward!
 - Need to grow these catalogs!

- Inferring source properties from grav. waves tough
 - Binary black holes: 7 dims of parameters!
 - Current NR grav. wave catalogs:
 - ~3,000 waveforms/15 years(~3 points per dimension)
 - Not enough moving forward!
 - Need to grow these catalogs!
- Problem: BBH sims need ~4 supercomputing nodes

Kip Thorne, pre-2004

- Inferring source properties from grav. waves tough
 - Binary black holes: 7 dims of parameters!
 - Current NR grav. wave catalogs:
 - ~3,000 waveforms/15 years
 (~3 points per dimension)
 - Not enough moving forward!
 - Need to grow these catalogs!
- Problem: BBH sims need ~4 supercomputing nodes
- Idea: Fit BBH on desktop ⇒ massively grow catalogs!

- Inferring source properties from grav. waves tough
 - Binary black holes: 7 dims of parameters!
 - Current NR grav. wave catalogs:
 - ~3,000 waveforms/15 years(~3 points per dimension)
 - Not enough moving forward!
 - Need to grow these catalogs!
- Problem: BBH sims need ~4 supercomputing nodes
- Idea: Fit BBH on desktop ⇒ massively grow catalogs!

Two black holes merge, gravitational waves detected!

Now let's extract the science!

- Inferring source properties from grav. waves tough
 - Binary black holes: 7 dims of parameters!
 - Current NR grav. wave catalogs:
 - ~3,000 waveforms/15 years(~3 points per dimension)
 - Not enough moving forward!
 - Need to grow these catalogs!
- Problem: BBH sims need ~4 supercomputing nodes
- Idea: Fit BBH on desktop

 massively grow catalogs!

BlackHoles@Home Secret Sauce

- More efficient numerical grids
- NRPy+

BlackHoles@Home: BBHs on the Desktop Core Challenge

BlackHoles@Home: BBHs on the Desktop Core Challenge

AMR Grids

Adaptive Mesh Refinement (Most Popular Method in NR)

Better grids would...

- Exploit near-symmetries
- Employ smoother transitions in resolution

BlackHoles@Home: BBHs on the Desktop Core Challenge

Adaptive Mesh Refinement (Most Popular Method in NR)

New BiSphere Grids

~20x more efficient sampling for compact binary simulations

BlackHoles@Home: BBHs on the Desktop Core Challenge

Adaptive Mesh Refinement (Most Popular Method in NR)

New BiSphere Grids

~20x more efficient sampling for compact binary simulations

- Exploits near-symmetries (~5x)
- Smooth transitions in resolution (~4x)

BiSphere grids: Two overlapping numerical grids in Spherical coordinates

BiSphere grids: Two overlapping numerical grids in Spherical coordinates

- Challenge #1: Spherical coordinates have coordinate singularities
 - Tensors and vectors diverge or go to zero -> numerically <u>unstable</u>

BiSphere grids: Two overlapping numerical grids in Spherical coordinates

- Challenge #1: Spherical coordinates have coordinate singularities
 - Tensors and vectors diverge or go to zero -> numerically <u>unstable</u>
- Idea: Scale out singular parts, (treat singular & nonsingular separately)

BiSphere grids: Two overlapping numerical grids in Spherical coordinates

- Challenge #1: Spherical coordinates have coordinate singularities
 - Tensors and vectors diverge or go to zero -> numerically <u>unstable</u>
- Idea: Scale out singular parts, (treat singular & nonsingular separately)
- Result: <u>Numerical stability & robustness on par with Cartesian</u>
 - a. Ordinary spherical polar: done!

Baumgarte, Montero, Cordero-Carrión, Müller (PRD 87, 044026, 2012), built upon covariant BSSN formulation of Brown (PRD 79, 104029, 2009)

b. Generic-radius spherical polar (incl. log-radial): done!

Ruchlin, Etienne, Baumgarte (PRD 97, 064036, 2018)

Need Einstein's equations in Spherical-like coordinates

NRPy+: Python-based C code generation framework for NR

Tensorial
expressions in
Einstein-like
notation ⇒
Highly optimized
C-code kernels
(with FDs)

"Nerpy", the NRPy+ mascot. Photo CC2.0 Pacific Environment (modified).

https://blackholesathome.net

https://nrpyplus.net

https://github.com/zachetienne/nrpytutorial

Need Einstein's equations in Spherical-like coordinates

NRPy+: Python-based C code generation framework for NR

Tensorial expressions in Einstein-like notation ⇒ Highly optimized C-code kernels (with FDs)

(modified

BlackHoles@Home

https://blackholesathome.net

https://nrpyplus.net

https://github.com/zachetienne/nrpytutorial

BiSphere grids: Two overlapping numerical grids in Spherical coordinates

- Challenge #1: Spherical coordinates have coordinate singularities
 - Tensors and vectors diverge or go to zero -> numerically <u>unstable</u>
- Idea: Scale out singular parts, (treat singular & nonsingular separately)
- Result: <u>Numerical stability & robustness on par with Cartesian</u>
 - a. Ordinary spherical polar: done!

Baumgarte, Montero, Cordero-Carrión, Müller (PRD 87, 044026, 2012), built upon covariant BSSN formulation of Brown (PRD 79, 104029, 2009)

b. Generic-radius spherical polar (incl. log-radial): done!
Ruchlin, Etienne, Baumgarte (PRD 97, 064036, 2018)

- Challenge #2: Develop new algorithm for
 - Interpolating between the two spherical grids;
 co-orbit grids with the binary system: done! (early 2019)
 - Changing basis between the two spherical grids: done!

BiSphere grids: Two overlapping numerical grids in Spherical coordinates

- Challenge #1: Spherical coordinates have coordinate singularities
 - Tensors and vectors diverge or go to zero -> numerically <u>unstable</u>
- Idea: Scale out singular parts, (treat singular & nonsingular separately)
- Result: <u>Numerical stability & robustness on par with Cartesian</u>
 - a. Ordinary spherical polar: done!

Baumgarte, Montero, Cordero-Carrión, Müller (PRD 87, 044026, 2012), built upon covariant BSSN formulation of Brown (PRD 79, 104029, 2009)

b. Generic-radius spherical polar (incl. log-radial): done!
Ruchlin, Etienne, Baumgarte (PRD 97, 064036, 2018)

- Challenge #2: Develop new algorithm for
 - Interpolating between the two spherical grids;
 co-orbit grids with the binary system: done! (early 2019)
 - Changing basis between the two spherical grids: done!

Review: Progress as of 2019 April APS

Link to video (YouTube): https://youtu.be/ZKPY1nRy-t8

Finding from BH collision test:
Numerical errors small and
converge to zero at expected rate

BiSphere grids: Two overlapping numerical grids in Spherical coordinates

- Challenge #1: Spherical coordinates have coordinate singularities
 - Tensors and vectors diverge or go to zero -> numerically <u>unstable</u>
- Idea: Scale out singular parts, (treat singular & nonsingular separately)
- Result: <u>Numerical stability & robustness on par with Cartesian</u>
 - a. Ordinary spherical polar: done!

Baumgarte, Montero, Cordero-Carrión, Müller (PRD 87, 044026, 2012), built upon covariant BSSN formulation of Brown (PRD 79, 104029, 2009)

b. Generic-radius spherical polar (incl. log-radial): done!
Ruchlin, Etienne, Baumgarte (PRD 97, 064036, 2018)

- Challenge #2: Develop new algorithm for
 - Interpolating between the two spherical grids;
 co-orbit grids with the binary system: done! (early 2019)
 - Changing basis between the two spherical grids: done!

BiSphere grids: Two overlapping numerical grids in **Spherical** coordinates

- Challenge #1: Spherical coordinates have coordinate singularities
 - Tensors and vectors diverge or go to zero -> numerically <u>unstable</u>
- Idea: Scale out singular parts, (treat singular & nonsingular separately)
- Result: Numerical stability & robustness on par with Cartesian
 - a. Ordinary spherical polar: done!

Baumgarte, Montero, Cordero-Carrión, Müller (PRD 87, 044026, 2012), built upon covariant BSSN formulation of Brown (PRD 79, 104029, 2009)

b. Generic-radius spherical polar (incl. log-radial): done!
Ruchlin, Etienne, Baumgarte (PRD 97, 064036, 2018)

- Challenge #2: Develop new algorithm for
 - Interpolating between the two spherical grids;
 co-orbit grids with the binary system: done! (early 2019)
 - Changing basis between the two spherical grids: done!
- Challenge #3: Simulations 50x too slow! How to fix?

• Challenge #3: Simulations 50x too slow! How to fix?

Challenge #3: Simulations <u>50x</u> too slow! How to fix?

- Optimize the codebase
 - ~1.5x gain through software optimization!

Challenge #3: Simulations <u>50x</u> too slow! How to fix?

- Optimize the codebase
 - ~1.5x gain through software optimization!
- Address the source of the problem: CFL condition
 - - Spherical coords focus gridpoints at *r*=0, *z*-axis

Challenge #3: Simulations <u>50x</u> too slow! How to fix?

- Optimize the codebase
 - ~1.5x gain through software optimization!
- Address the source of the problem: CFL condition
 - - Spherical coords focus gridpoints at *r*=0, *z*-axis
 - NRPy+ generates NR codes in *many* coord systems
 - Cartesian best for maximizing timestep
 - Spherical-like best for near-axisymmetry

• Challenge #3: Simulations 50x too slow! How to fix?

- Optimize the codebase
 - ~1.5x gain through software optimization!
- Address the source of the problem: CFL condition
 - - Spherical coords focus gridpoints at *r*=0, *z*-axis
 - NRPy+ generates NR codes in *many* coord systems
 - Cartesian best for maximizing timestep
 - Spherical-like best for near-axisymmetry

Challenge #3: Simulations 50x too slow! How to fix?

Ideas for making code >~50x faster

- Optimize the codebase
 - ~1.5x gain through software optimization!
- Address the source of the problem: CFL condition
 - - Spherical coords focus gridpoints at *r*=0, *z*-axis
 - NRPy+ generates NR codes in *many* coord systems
 - Cartesian best for maximizing timestep
 - Spherical-like best for near-axisymmetry

Hybrid gridding approach

~100x larger timesteps!

• Challenge #3: Simulations 50x too slow! How to fix?

Ideas for making code >~50x faster

- Optimize the codebase
 - ~1.5x gain through software optimization!
- Address the source of the problem: CFL condition
 - - Spherical coords focus gridpoints at *r*=0, *z*-axis
 - NRPy+ generates NR codes in *many* coord systems
 - Cartesian best for maximizing timestep
 - Spherical-like best for near-axisymmetry

Hybrid gridding approach

- ~100x larger timesteps!
- Memory usage?!

Challenge #3: Simulations 50x too slow! How to fix?

Ideas for making code >~50x faster

- Optimize the codebase
 - ~1.5x gain through software optimization!
- Address the source of the problem: CFL condition
 - Simulation timestep ∞ min dist between gridpoints
 - Spherical coords focus gridpoints at *r*=0, *z*-axis

- Memory usage?!
- Will it even work?!

schematic

Latest Results

Link to video (YouTube): https://youtu.be/3CP553oleWc

Gravitational Wave Comparison **Red:** new simulation **Blue:** trusted (ETK) result

Gravitational Wave Comparison **Red:** new simulation 0.004 **Blue:** trusted (ETK) result 4 HPC nodes, 28GB RAM

Gravitational Wave Comparison **Red:** new simulation 0.004 Blue: trusted (ETK) result 4 HPC nodes, 28GB RAM

Gravitational Wave Comparison

Early 2020 Results

- Problem with this grid structure:
 - Only works well for two orbiting black holes very close to merger
 - Larger separations -- Cartesian grid too large -- too much memory!
 - Narrow Cartesian grid & rotate grids? Nope; resolution drop too large
- What to do?!

5-grid Bispheres: Binary Trajectory Comparison

Binary Trajectory

- Same GR gauge condition -> trajectories should overlap (They do!)
- Einstein Toolkit high-res run:
 149GB RAM
- 3. SENR/NRPy+
 (BlackHoles@Home):

 3GB RAM

Conclusions

Summary

- 1. (close-separation) BBH mergers on a cellphone!
- 5-grid Bispheres: Comparable or superior numerical errors vs Cartesian AMR

~50x less memory usage!

We're so close now! -={ Last Steps }=-

- 1. Current focus: GW extraction
- 2. Next:
- Migrate to simpler gridding structure at merger
- Develop & release the kraken BOINC client!

Conclusions

Summary

- 1. (close-separation) BBH mergers on a cellphone!
- 5-grid Bispheres: Comparable or superior numerical errors vs
 Cartesian AMR
 ~50x less memory usage!

We're so close now! -={ Last Steps }=-

- 1. Current focus: GW extraction
- 2. Next:
- Migrate to simpler gridding structure at merger
- Develop & release the kraken BOINC client!

BI

Stay tuned! BlackHoles@Home will be launching soon

https://blackholesathome.net

Schematic